Resonances

D. Brown, BNL

a passion for discovery

I am trying to capture your view of how to arrange nuclear data

- I will present the consensus view of required arrangement of nuclear data,
 - presented at SG38 Meeting in Tokai, Japan, Dec. 2013
 - revised and presented at SG38 Meeting in Paris, France, Apr. 2014
 - revised again for this meeting
- Element & attribute names are illustrative. They can be changed.
- We've tried to have a detailed discussion about the resonances, but I don't think we've really wrapped it up

Requirements for a top level hierarchy for a next generation nuclear data format

D.A. Brown, ^{1,*} A. Koning, ² D. Roubtsov, ³ R. Mills, ⁴ C.M. Mattoon, ⁵ B. Beck, ⁵ R. Vogt, ⁶ M. White, ⁷ P. Talou, ⁷ and A.H. Kahler ⁷

¹NNDC, Brookhaven National Laboratory, USA

²NRG Petten, Netherlands

³AECL, Chalk River Laboratories, Canada

⁴National Nuclear Laboratory, United Kingdom

⁵Lawrence Livermore National Laboratory, USA

⁶Lawrence Livermore National Laboratory, USA

Divide the universe with a spherical box.

- Boundary parameter
- Outside box, use two-particle "free" wave functions
- Somewhere inside the box is the reaction zone; we don't care about the details. Can write those details as the Green's function solution of Schoedinger's equation.
- The R matrix is the Green's function.
- "Everything" can be written in terms of R; with it we can compute the scattering matrix U, so we have $d\sigma/d\Omega$.

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E}$$

$$U_{cc'} = e^{-i(\varphi_c + \varphi_{c'})} \sqrt{P_c} \sqrt{P_{c'}}$$

$$\times \{ [\mathbf{1} - \mathbf{R}(\mathbf{L} - \mathbf{B})]^{-1} [\mathbf{1} - \mathbf{R}(\mathbf{L}^* - \mathbf{B})] \}_{cc'}$$

 "Everything" can be written in terms of R; with it we can compute the scattering matrix U:

$$\begin{split} \sigma_c &\equiv \sum_{c'} \sigma_{cc'} = 2\pi \lambda_c^2 (1 - \Re U_{cc}) \\ \sigma_{cc'} &= \pi \lambda_c^2 g_c |\delta_{cc'} - U_{cc'}|^2 \\ &\frac{d\sigma_{\alpha,\alpha'}(E)}{d\Omega} = \frac{1}{k^2 (2i+1)(2I+1)} \sum_{s,s'} \sum_{L=0}^{\infty} B_L(\alpha s, \alpha' s'; E) P_L(\mu) \end{split}$$

- R matrix theory works for any two particles
- R matrix theory is exact
- R matrix theory is elegant

- R matrix theory works for any two particles
- R matrix theory is exact
- R matrix theory is elegant

ENDF screws it up

<resonances>

- Standard ENDF MF=2, MT=151 (but improved)
- <setOfChannels>:
 the list of channels/
 reactions in this
 element
- <RRR> are the resolved resonances
- <uRR> are average resonance data

<resonances>

- Standard ENDF MF=2, MT=151 (but improved)
- <setOfChannels>: the list of channels/ reactions in this element
- <RRR> are the resolved resonances
- are averageresonance data

What we need for a <channel>

- reaction designator
 - really just the identity of the 2 particles
 - ENDF's LRF=7 has all this, but w/o particle database is quite verbose
- relativistic/nonrelativistic flag
- ENDF MT (if appropriate)
- **■** s, I, J, □

- other user-definable quantum numbers (e.g. K)
- boundary parameter B_c
- channel radius information
- sign of reduced width

resonances documentation setOfChannels channel = 1 or 0 Δ = Any num. RRR table backgroundReactions backgroundReaction crossSection backgroundRMatrix reactionProducts **Several options to correct** URR resonance backgrounds, table we'll come back to these crossSection backgroundReactions backgroundReaction reactionProducts

<resonances>

- Standard ENDF MF=2, MT=151 (but improved)
- <setOfChannels>:
 the list of channels/
 reactions in this
 element
- <RRR> are the resolved resonances
- <uRR> are average resonance data

RRR, cont.

$$+ = 1$$

 $Q = 1 \text{ or } 0$
 $\Delta = \text{Any num.}$

- ENDF gives a lot of possible approximations and modifications to the R matrix; not all of these are faithful to R matrix theory
- We will need to grandfather in all of the ENDF approximations, no matter how bad they are:
 - (LRF=1) SLBW
 - (LRF=2) ENDF-style MLBW
 - (LRF=7, KLM=2) CALENDF-style MLBW (aka MNBW) — this is a controlled R-matrix approximation
 - (LRF=3) ENDF-style Reich-Moore
 - (LRF=7, KRM=3) Reich-Moore this is a controlled R-matrix approximation
 - (LRF=7, KRM=4) Full R-matrix
 - (LRF=4) Adler-Adler ?
- Do w/ attribute on <RRR>

BROOKHAVEN NATIONAL LABORATORY

RRR

The RRR doesn't need a complicated format, but it needs a complete one. All we need is a :

E	Г	Γ	Γ	Γ	
eV	eV	eV	eV	meV	
1.23	9.433	0	2.33E-03	7.1	
1.46	4.833	0	2.33E-03	4.6	
3.45	1.78	1.78	0	0	

Columns in table must map to appropriate <channel>

RRR, cont.

$$+ = 1$$

 $Q = 1 \text{ or } 0$
 $\Delta = \text{Any num.}$

- ENDF provides a lot of tricks to help repair damage bad approximations cause
- We will need to grandfather in all the ENDF tricks to fix the ENDF approximations, no matter how bad they are.
- Background R-matrix fixes:
 - (KBK=0) Dummy resonances
 - (KBK=1) Tabulated function
 - (KBK=2) SAMMY's logrithmic parameterization
 - (KBK=3) Froehner's parameterization

Fixing the background R-matrix is not always enough

$$+ = 1$$

 $Q = 1 \text{ or } 0$
 $\Delta = \text{Any num.}$

- Background cross sections may be needed to be added to certain channels
- Angular distributions may need to be specified if parameterization doesn't support them or if we don't trust them
- Better to keep this with the RRR than in the <reaction> hierarchy.

URR

- We don't know the resonances (they are unresolved).
 We assume
 - the resonance energies are distributed according to random matrix theory
 - the widths of the resonances are distributed with χ^2 distributions
- ENDF further assumes the resonances were given in SLBW
- With these assumptions, can compute
 - average cross sections
 - probability distributions for cross sections, e.g. P(σ|E) using NJOY's PURR module
- GRUCON developers take it further... they replace all RRR with URR. Compute $P(\sigma_{tot}|E)$ and $P(\sigma_x|\sigma_{tot},E)$

BROOKHAVEN NATIONAL LABORATORY

URR

- Need: degree of freedom for each channel
- Need: table with:
 - incident energy
 - average level spacing
 - average width for each channel
- Need interpolation scheme for average parameters
- Should we also put a flag for the approximation (to allow other than SLBW)?
- Need a spot for PURR probability distributions, to be covered later

Are we missing anything?

